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Effect of chain flexibility on the nematic-smectic transition

Alexei V. Tkachenko
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 17 February 1998; revised manuscript received 10 August 1998!

The theory of nematic-smectic phase transition in the system of uniform semiflexible chains with hard-core
repulsion is presented. Both the general density-functional formalism and the tube-model calculation show that
the flexibility of the chains results in a strongfirst-order transition, in contrast to the common weak-
crystallization scenario of the nematic-smectic transition in rigid rods. The calculated spinodal volume fraction
of the uniform nematic phase and the period of the modulation instability are consistent with recent experi-
mental results.@S1063-651X~98!15511-3#

PACS number~s!: 64.70.Md, 61.30.Cz, 61.41.1e
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I. INTRODUCTION

The nematic-smectic phase transition is among the m
interesting phenomena in liquid crystals. This is one of a f
examples of apartial breaking of translational symmetry: th
system in the smectic state has a layered structure, while
translational symmetry along the in-layer directions is p
served. It is believed that normally the physical origin of t
transition to the smectic phase is the nonuniform architec
of the constituent particles such that the nematic-sme
transition can be interpreted as a microphase separatio
different parts of the molecules@1#. Nevertheless, it is con
ceptually important to realize that a nontrivial structure
the constituent objects is not a necessary condition for
formation of a smectic state. Both analytical and numeri
investigations show that an entropy-driven nematic-
smectic phase transition occurs even in the system of
form rigid rods@2–6#.

Recent experiments with rodlike viruses have confirm
the predictions of such theories@7,8#. They also showed tha
a dramatic change in behavior takes place due to the fi
flexibility of viruses. In particular, the transition turns out
be of the strong first order rather than of weak-crystallizat
type typical of most smectics. In addition, the volume fra
tion at the transition is considerably higher in the case
flexible chains than for rods. The chains are strongly loc
ized within the layers, so that the periodicity of the smec
phase is nearly equal to the length of an individual stretc
chain, while in the stiff-rod case it is longer than the leng
of a rod because of a weaker localization.

In a recent communication@9# we have proposed a theor
based on the tube model for the description of the nema
smectic phase transition in the system of uniform se
flexible chains with hard-core repulsion. This model h
been shown to capture all the experimentally observed
tures of the transition. In this paper we elaborate on
approach by relating the tube-model calculation to a gen
density-functional formalism. It is shown that the stro
first-order character of the transition and the equivalence
the smectic period to the chain length follow from a gene
form of the density functional of the system.

In Sec. II we review the density-functional approach
the nematic-smectic transition. In Sec. III we derive the g
eral form of the free energy of semiflexible chains expres
PRE 581063-651X/98/58~5!/5997~6!/$15.00
st

he
-

re
ic
of

f
e
l
-
i-

d

te

n
-
f
l-
c
d

c-
i-
s
a-
r
al

of
l

-
d

as a functional of the density of their midpoints. The brea
down of the stability condition~positivity of the inverse
structure factor! yields the limit of stability of the nematic
phase and the critical wave vector of the modulation bif
cation. In Sec. III we obtain the parameters of the dens
functional from the tube model of the nematic state. T
allows one to determine the parameters of the transition
various chain lengths. The structure of the theory allows o
to understand the difference between the behavior of se
flexible chains and that of rigid rods.

II. DENSITY-FUNCTIONAL APPROACH
TO NEMATIC-SMECTIC TRANSITION

A powerful tool for the description of various types o
crystallizations and, in particular, of the nematic-smec
phase transition is the density-functional approach. Wit
such theories the free energyF of the system is parameter
ized by the one-particle densityr(r ). The thermodynamic
stability ~or at least metastability! of the spatially uniform
~e.g., nematic! phase with respect to density modulation
controlled by the sign of the corresponding second variat
of the free energy:

G21~q![
1

kT

d2F

drqdr2q
.0. ~1!

Note thatG21(q) denotes the inverse structure factor in t
nematic phase@G(q)[^drqdr2q&#. The system become
unstable with respect to the transition to a spatially mo
lated ~smectic! state, when inequality~1! is violated at a
certain finite wave vectorq0 . In many cases, the nematic
smectic transition can be successfully described within
weak crystallization theory@10#. In this approach one as
sumes that near the transition, the local deviations of
density field are dominated by one or by several critical d
sity waves, i.e.,

dr~r !. (
a51

n

ra~r !exp~ iqar !1c.c. ~2!

Hereqa are the critical wave vectors. The spatial depende
of the n-component order parameterra is supposed to be
much slower than the critical density modulation itself.
5997 © 1998 The American Physical Society
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5998 PRE 58ALEXEI V. TKACHENKO
The Landau-type expansion of the free energy in term
this order parameter is the essence of the weak crystalliza
approach:

F5E S e

2
dr21

l

6
dr31

g

24
dr41

g

2 (
a51

n

u¹rau2D dr . ~3!

The translational symmetry of the free energy demands
any term in the above expansion be a combination of den
waves with zero total wave vector. Note that a large thi
order term in this expansion would result in a strong fir
order transition and thus would violate the requirement
smallness of the order parameter. Therefore, the weak c
tallization theory is adequate only for the cases in which
third-order term is zero or small. In particular, its applicab
ity to the nematic-smectic phase transition is normally ju
fied by the broken rotational symmetry of the nematic pha
Indeed, in the rotationally symmetric case, the critical wa
vectors would lie on the sphere of radiusq0 , and one could
choose three critical density waves with zero total wave v
tor. Therefore, rotational symmetry implies that there is
nonzero cubic term in expansion~3!. In the case of the
nematic-smectic transition, the degeneracy in the orienta
of the critical wave vector is lifted and one cannot constr
a third-order combination of the critical density wave
Hence, the weak-crystallization theory can usually be
plied to this transition.

As an example, consider the transition to the smectic s
in the system of perfectly aligned hard rods. The dens
functional theory, developed for this system in Ref.@2#,
shows that its basic physics can be successfully descr
even in the second virial approximation:

F ~rods!

kT
5E drr~r !ln r~r !

1
1

2E E drdr 8r~r !v~r2r 8!r~r 8!, ~4!

which yields the following simple expression for the inver
structure factor:

G21~q![S 118F
sin qL

qL D . ~5!

Here we are interested only in the wave vectors paralle
the nematic director,e. The breakdown of the stability con
dition corresponds to the transition to the spatially modula
smectic phase. Since the instability is dominated by a sin
density wave~with q.61.5pe/L), the transition in the
hard-rod system is of theweak-crystallizationtype. This
means that the smectic modulation of hard rods is weak n
the transition point. As a result, the normal-to-layer fluctu
tions of the rods are of the order of their lengthL, consistent
with the fact that the corresponding periodl* .1.3L differs
considerably fromL. Although within the model of freely
rotating rods@5,6# the phase transition turns out to be of t
first order, it is so weak that the transition can hardly
distinguished experimentally from a second-order one.
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Nematic-smectic transition of semiflexible chains

Consider a system of wormlike uniform chains of leng
L with hard-core diameterD. The single-chain Hamiltonian
for a given conformationr (s) (0,s,L) has the form

H ~0!5kTE
0

Lp

4S ]ts

]s D 2

ds. ~6!

Here s is the coordinate along the chain contour andts
5(]r /]s) is a unit tangent vector. The parameterp is the
persistence length of the chain in the isotropic phase. In
nematic phase, however, there are two different scales
play the role of persistence length@11#. One of them is the
typical distance between ‘‘hairpins,’’ the points at which th
tangent vector changes its direction by 180°. This len
becomes exponentially large for high enough nematic or
parameter and we assume here that it exceeds the c
length, i.e., the conformations of the chains are straight li
with only weak transverse fluctuations of the tangent vec
about the nematic director. The correlations of these tra
verse fluctuations are determined by another length s
known as the deflection length,j' . This scale, which is
smaller then the bare persistence lengthp, determines the
thermodynamics of the system~the free energy can be est
mated askT per chain segment of lengthj').

We now have to express the free energy as a functiona
the density of the chains’ centers,

r~r !5 (
chains

d„r ~L/2!2r …. ~7!

If the chains were infinite, the conformational free ener
averaged over scales larger thanj' would be a local func-
tional of the volume fraction. For finite chains there is also
translational entropy contribution and a correction due to
nite density of chain ends:

F ~chains!

kT
5E dr$r~r !ln r~r !1 f ~con!

„f~r !…

1rend~r ! f ~end!
„f~r !…%. ~8!

Because of the low density of chain endsrend, their effect is
accounted for in the above expression by a term linea
rend, coupled to some local function of the volume fractio
Since the chains are strongly stretched along the nem
director,z axis, and do not form hairpins, one can relate t
local density of the endsrend(z) and the local volume frac-
tion of chainsf(z) to the density fieldr(z) ~we will not
consider any fluctuations of these fields in the plane nor
to z):

rend~z!5r~z1L/2!1r~z2L/2!, ~9!

f~z!5
pD2

4 E
2L/2

L/2

r~z1s!ds. ~10!

Due to these nontrivial relationships between the three fie
r(r ), f(r ), and rend(r ), the above local free-energy func
tional becomes nonlocal when expressed in terms of a si
density field,r. Such nonlocal properties of the density fun
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tional are necessary for the description of the nema
smectic transition. The semiflexible chains are unique in
sense that this functional has a well defined general fo
dictated by the property of locality on the mesoscopic sca
~below L and abovej').

In order to study the stability of the nematic state, co
sider the second variation of the free energy at the fi
average volume fractionF ~ and the corresponding densi
r̄5F/V0 , where V0[pD2L/4 is the volume of a single
chain!:

dF ~chains!

kT
5

1

2E dr H V0

dr~r !dr~r !

F

1
]2f (con)

]f2 U
F

df~r !df~r !12
] f (end)

]f U
F

3drend~r !df~r !J . ~11!

Performing the Fourier transform of all the fields under co
sideration~along thez axis, neglecting their variations in
other directions! and expressing these fields in terms of t
density deviationsdr, we obtain the following diagonalized
free energy:

dF ~chains!

kT
5

V0

F (
q

drqdr2q

2

3F11L~F!S L

l~F!

~12cosqL!

~qL!2
1

sinqL

qL D G .

~12!

Here the dimensionless parameterL and the lengthl are
certain functions of the average volume fraction, but not
the chain length or wave vector. Note the universality of
(q,L) dependence of the inverse structure factor for se
flexible chains:

G21~q![
1

kT

d2F ~chains!

drqdr2q

5
V0

F F11L~F!S L

l~F!

~12cosqL!

~qL!2
1

sinqL

qL D G
~13!

Before proceeding with the discussion of this general form
G21, we present a simple model which yields the micr
scopic expressions for the parametersL(F) and l(F) ap-
pearing in Eq.~13!.

III. TUBE-MODEL CALCULATION

The interactions of a chain with its neighbors can be m
eled by confining it in an effective tube. If the system
dense enough, it can be viewed as a close-packed arra
such tubes. This means that the average tube diameter i
vicinity of some pointr is D/Af(r ), wheref(r ) is the local
volume fraction. Therefore, the allowed amplitude of flu
tuations of a chain within the tube isD5D(1/Af(r )21) .
-
e
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-
d

-

f
e
i-

f
-

-

of
the

The corresponding conformational free energy of the ch
can be evaluated in the Gaussian approximation, with
confinement imposed by a fictitious external field. T
resulting value is (3/16)kT per correlation lengthj'

5(2D)2/3p1/3 @12#. Note that one can obtain this result, up
a numerical coefficient, from simple scaling arguments, si
j can be identified with a typical contour length between t
reflections of the chain from the tube walls. We conclu
that the conformational free energy per unit volume is de
mined by the fieldf(r ):

f ~con!~r !5
3

16

kT

j'~f!

4f~r !

pD2
. ~14!

We assume that the dominant effect responsible for
smectic ordering is that theinternal parts of the chains can
not occupy a ‘‘shadow’’ region in the vicinity of a free end.
This is a particular realization of thecorrelation hole effect
@13#. In the extreme case of perfectly aligned rigid rods, t
space behind the edge of one rod can be filled only by
complementary end part of another one@see Fig. 1~a!#. How-
ever, in the system of semiflexible chains, the size of
shadow region can be reduced by appropriate readjustm
of the conformations of the neighboring chains, as shown
Fig. 1~b!. The screening of the shadow region can be
scribed by ascreening length ls . The conformational free-
energy penalty for the creation of the free space near
edge of every chain is given by the product of the loc
transverse pressureP'5f] f (con)/]f2 f (con) and the typical
volume of the shadow regiongp l sD

2/4. Hereg is a geo-
metrical factor of order of unity. Approximating the shape
a typical shadow region with a cone, one obtainsg51/3. The
typical bending energy associated with the distortion
chain contour needed for the screening of the shadow re
is kTD2p/ l s

3 per chain involved. The screening length a
the energy of the end defect is determined by the bala
between the osmotic energy penalty and the bending ene
i.e., they can be obtained by minimization of the followin
free energy:

FIG. 1. The shadow region~dashed! in the case of rigid rods~a!
and semiflexible chains~b!. Note thescreeningof the shadow by
neighboring chains in the latter case.
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f ~end!~ l s!5D2S gp l s

4
P'1

Zp

l s
3

kTD . ~15!

Here Z is the effective number of distorted chains~fortu-
nately, the final result is nearly insensitive to the choice
this parameter!. The minimal value of the above free energ
is given by

f ~ end!.
pgD2

2
P'

3/4~kTp!1/4.
gkT

8
~1/Af~z!21!25/4.

~16!

The correspondong optimal screening length is

l s52~2D !2/3p1/3~1/Af~z!21!5/12[2l * ~1/Af~z!21!5/12.
~17!

Here l * [(2D)2/3p1/3 is the fundamental length scale of th
problem. Up to af-dependent factor, it determines both t
screening length and the correlation lengthj' discussed ear
lier. For practical purposes, the screening length can be ta
roughly equal tol * . Note that our estimate of the energy
the end defect is somewhat different from the one descri
in Ref. @14#, which is based on elasticity theory. The elas
approach neglects the energy penalty associated with
nonzero osmotic pressureP' , which in our case turns out to
be considerably stronger than next-order elastic correcti
Nevertheless, the very notion of the effective attraction
tween chain ends discussed in the present paper is conc
ally close to the one in Ref.@14#.

Depending on the total chain length, one can distingu
between two qualitatively different limiting regimes. IfL
! l * , the screening effect is not significant and the cha
can be considered as rigid rods. Here, we consider the o
site limit, L@ l * , when the total volume fraction of th
shadow regions is low and one can neglect their overlap
the spatially uniform nematic phase.

Summarizing the above calculation, one can write the
tal free energy of the system as

F ~chains!5
kT

V0
E dr H V0r~z!ln r~z!1

3

16

L

l *

3
f~z!

~1/Af~z!21!2/3
1

g

8

V0rends~z!

~1/Af~z!21!5/4J .

~18!

The first term accounts for the translational entropy of
chains, the second one represents the bulk conformati
free energy of infinitely long chains, and the last term is d
to the end anomalies. One can easily verify that our mo
free energy has the general form obtained in the prece
section, Eq.~8!. There is a one-to-one correspondence
tween the three discussed contributions to the free en
and the three terms in the following expression for the
verse structure factor in the uniform nematic phase, a
function of the average volume fractionF:
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G21~q![
1

kT

d2F

drqdr2q

5
V0

F S 11
5

16

1

F~1/AF21!9/4

3F 2L

3l s~F!

~12cosqL!

~qL!2
1gAF

sinqL

qL G D
~19!

This expression has exactly the same general structur
was derived in the preceding section. The uniform nemati
stable~or at least metastable! with respect to the transition to
the spatially modulated~smectic! state as long as the calcu
lated inverse structure factor is positive. The end effect c
tribution is the only term in expression~19! that may be
negative@due to the sign-changing factor sin(qL)/qL#. For
most wave vectors, however, this term cannot change
overall sign of the structure factor because of the domin
positive conformational contribution, which contains th
large factorL/ l s . This is related to the fact that the shado
regions arescreenedin the many-chain system, and the co
responding end effect is just a small correction to the c
formational free energy. This correction is important only
the vicinity of the zeros of the expression (
2cosqL)/(qL)2, which determines theq dependence of the
bulk conformational contribution to the inverse structure fa
tor.

We conclude that the modulation instability in the syste
is expected only for nearlyL-periodic density waves, which
are the zero modes of the conformational term. One can
pand the inverse structure factor in the vicinity of such wa
vectors, 2pn/L (n561,62, . . . ):

G21~dq!udq5q22pn/L

5
V0

F S 11
5

16

1

F~1/AF21!9/4

3F L

3l s
S dqL

2pnD 2

1gAFS dqL

2pnD G D .

Its minima are the candidates for the critical wave vector
the modulation instability:

qn* 5
2pn

L S 123AFg
l s~F!

L D , n561,62, . . . .

~20!

The control parameterF at whichG21(qn* )50 turns out to
be independent ofn ~up to a cutoffnmax;L/l* , where the
small-dq expansion becomes inadequate!:

F* 5F11S 15g2l *

16L D 6/11G22

.S 11gAl *

L D 22

. ~21!

The existence of the family of critical wave vectors~20!
that differ only by integer multiplier is the signature ofthe
first-order phase transitionto the smectic state. Indeed, un
like the case of asingledominating density wave typical o
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most smectics~e.g., for rigid rods!, this degeneracyenables
one to compose the third-order combinations of the criti
modes@c(qn* )c(qm* )c(ql* ), n1m1 l 50], which contrib-
ute to the term@dc(z)#3 in the density-deviation expansio
of the free energy, Eq.~3!. The nonzero cubic term in th
Landau expansion is known to result in a first-order tran
tion.

The common period of all the critical modes is

l* 5L13AF* g l s~F* ! . ~22!

In a general case this critical period can differ from that
the equilibrium-modulated phase. Nevertheless, the ab
result suggests that the period of the smecticl nearly coin-
cides with the chain lengthL, and that the small correctio
l2L is of the order ofl s. l * . This correction determine
both the typical gap between well formed smectic layers
the typical longitudinal fluctuations of the chains in the
layers. This is consistent with the observations reported
Ref. @7#, for which the calculated lengthl * .100 nm is of
the order of the measured correction to the periodl2L
.50 nm. The effective hard-core diameter in the expe
ments can be estimated as the interchain separation at w
the electrostatic repulsion becomes of the order ofkT. This
length depends on the ionic strength, so it was possibl
change it independently of the particle density. Sincel *
[(2D)2/3p1/3 depends on the hard-core diameterD, the mea-
sured points on the phase diagram~concentration-ionic
strength! can be transformed to the coordinates of our the
(F –L/ l * ). The calculated spinodal volume fractio
Eq.~21!, is in agreement with the experimental value, whi
is about 0.75 forL/ l * in the range of 4–10. Note that th
chain-length dependence of the critical volume fraction
rather weak, as shown in Fig. 2.

FIG. 2. Spinodal volume fraction of uniform nematicF* as a
function of reduced chain lengthL/ l * . The solid line corresponds
to the theoretical result obtained for semiflexible chains (L/ l *
@1) and the dashed line is an interpolation of the crossover to
rigid-rod limit (L/ l * !1). The geometrical factorg is taken to be
1/3, as suggested in the text. Experimental points~diamonds! are
taken from Ref.@5#.
l
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IV. DISCUSSION AND CONCLUSIONS

We now compare the results obtained for semiflexi
chains with those for perfectly aligned rigid rods. Consid
the inverse structure factor of perfectly aligned rigid rod
Eq. ~5!:

G21~q!;S 118F
sinqL

qL D .

The first term here is due to translational entropy and
second one is the excluded-volume contribution, which
essentially the shadow-region end effect. Naturally, the rig
rod structure factor does not contain the conformational c
tribution, which dominates the similar expression for sem
flexible chains. Hence, the shadow-region effect, wh
drives the nematic-to-smectic transition, is no longer a sm
correction. As a result, the transition in the system of ro
takes place at a lower volume fraction, which isF* .0.57
within the second virial approximation, Eq.~5!. Taking the
higher virial terms into account changes this value to 0.36
the rods are freely rotating, the critical volume fraction d
pends on the length-to-diameter ratio. For long enou
chains (L/D@10) the transition volume fraction reachs
‘‘universal’’ value F.0.46@5,6#. In the case of considerabl
flexibility of the ‘‘molecules,’’ the critical~spinodal! volume
fraction given by expression~21! is not constant even for a
high length-to-diameter ratio, since the relavant parame
here isL/ l * , rather thanL/D ~see Fig. 2!.

The typical behavior of the inverse structure factors
rigid rods, Eq.~5!, and semiflexible chains, Eq.~19!, are
depicted in Fig. 3. Unlike the case of semiflexible cha
(L@ l * ), in which theq* degeneracy of the bifurcation poin
results in a strong first-order transition, the deepest minim
of the rigid-rod inverse structure factor determines asingle
critical wave vector of the modulation instability. This ex
plains why the nematic-smectic transition for rigid rods
much softer than for semiflexible chains.

Another important implication of the theory is the effe
of polydispersity. Since the inverse structure factor descri
the effective two-body interactions, expressions~19! and~5!
can be extended to the polydisperse case by replacin

e

FIG. 3. Typical inverse structure factors~in arb. units! of the
nematic phase for rigid rods~dashed line! and semiflexible chains
~solid line!.
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6002 PRE 58ALEXEI V. TKACHENKO
single parameterL with the mean length of two interactin
particles (L11L2)/2, and averaging over the distribution o
lengths. The polydispersity acts against the modulation in
bility, because it reduces the depth of minima of the inve
structure factor. Hence, the critical volume fraction is e
pected to increase with polydispersity for both chains a
rods. However, while the smectic phase can form in syste
of rods with quite broad distribution of lengths@15#, the typi-
cal deviation of the chain length, which completely su
presses the transition in systems of chains, is of the orde
l * . Thus, in order to observe the smectic phase in the sys
of chains, the distribution of lengths has to be very narro

It should be noted that although we have shown that
above behavior follows from a very general form of the de
sity functional for semiflexible chains, our formalism cann
be directly applied to the case of long-range~hexagonal! in-
layer structure. In that case, a chain end becomes a rea
pological defect, and there is no reason to expect that
corresponding energy penalty is finite, i.e., that the co
sponding contribution to the total free energy, Eq.~8!, is
linear in the chain-end density.

In summary, the theory of nematic-smectic phase tra
tion for uniform semiflexible chains with hard-core repulsi
has been developed. Similarly to the case of rigid rods,
transition is driven by the shadow region end effect. T
difference is that due to the finite flexibility of the chains th
effect is screened and the size of the empty space near a
end is limited by the screening lengthl s. l * !L. The pres-
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ence of shadow regions yields just a small correction to
conformational free energy that stabilizes the spatially u
form nematic state. As a result, the spinodal volume fract
for flexible chains is much higher than for rigid rods. Th
trend is consistent with the experiments as well as with
recent theory of weakly flexible rods@16#. The modulation
instability of the nematic state can appear only for nea
L-periodic density waves, which are the soft modes of
bulk conformational free energy. Therefore, unlike the rig
rod case, the period of the smectic phase near the trans
point almost coincides with the chain lengthL. Another im-
portant difference is that in the case of semiflexible chai
the point of modulation instability is highly degenerate in t
critical wave vector resulting in a strong first-order pha
transition. The theory also implies that the flexibility of th
chains results in higher sensitivity of the transition to po
dispersity. The agreement of the theory with existing expe
mental data confirms that it captures the basic physics of
phenomenon.
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