PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Effect of chain flexibility on the nematic-smectic transition
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The theory of nematic-smectic phase transition in the system of uniform semiflexible chains with hard-core
repulsion is presented. Both the general density-functional formalism and the tube-model calculation show that
the flexibility of the chains results in a strorfgst-order transition, in contrast to the common weak-
crystallization scenario of the nematic-smectic transition in rigid rods. The calculated spinodal volume fraction
of the uniform nematic phase and the period of the modulation instability are consistent with recent experi-
mental results|S1063-651X98)15511-3

PACS numbes): 64.70.Md, 61.30.Cz, 61.4%te

I. INTRODUCTION as a functional of the density of their midpoints. The break-
own of the stability condition(positivity of the inverse

The nematic-smectic phase transition is among the mo ructure factoryields the limit of stability of the nematic

interesting phenomena in liquid crystals. This is one of a few\ o6 anq the critical wave vector of the modulation bifur-
examples of partial breaking of translational symmetry: the .otion In Sec. 1l we obtain the parameters of the density

system in the smectic state has a layered structure, while thgnctional from the tube model of the nematic state. This
translational symmetry along the in-layer directions is pre-ajjows one to determine the parameters of the transition for
served. It is believed that normally the physical origin of theyarious chain lengths. The structure of the theory allows one

transition to the smectic phase is the nonuniform architecturgy ynderstand the difference between the behavior of semi-
of the constituent particles such that the nematic-smecti¢lexible chains and that of rigid rods.

transition can be interpreted as a microphase separation of

different parts of the mOlepUlm. Neverthe.le.ss, it is con- 1l. DENSITY-FUNCTIONAL APPROACH

ceptually important to realize that a nontrivial structure of TO NEMATIC-SMECTIC TRANSITION

the constituent objects is not a necessary condition for the o )

formation of a smectic state. Both analytical and numerical A Powerful tool for the description of various types of
investigations show that an entropy-driven nematic-to-Crystallizations and, in particular, of the nematic-smectic

smectic phase transition occurs even in the system of unRhase tran_sition is the density-functional ap_proach. Within
form rigid rods[2—6] such theories the free ener§yof the system is parameter-

rned’zed by the one-particle densify(r). The thermodynamic
¢ Stability (or at least metastabilifyof the spatially uniform
{.9., nematic phase with respect to density modulation is

Recent experiments with rodlike viruses have confir
the predictions of such theori§¢s,8]. They also showed thai
a dramatic change in behavior takes place due to the finit : . L
flexibility of viruses. In particular, the transition turns out to controlled by the sign of the corresponding second variation
be of the strong first order rather than of weak-crystallizatior®f the free energy:
type typical of most smectics. In addition, the volume frac-
tion at the transition is considerably higher in the case of G Yq)=—=——>0. (1)
flexible chains than for rods. The chains are strongly local- KT 8pqdp—q

ized within the layers, so that the periodicity of the smectic hatG-Y(q) d he i ¢ in th
phase is nearly equal to the length of an individual stretched'Ote that (9) denotes the inverse structure factor in the

chain, while in the stiff-rod case it is longer than the length"€Matic phasgG(q)=(5pqdp_q)]. The system becomes
of a rod because of a weaker localization. unstable W|t_h respect to the_ transition to a ;paﬂally modu-
In a recent communicatiof®] we have proposed a theory lated (smecti¢ state, when inequalityl) is violated at a

based on the tube model for the description of the nematicSe"ain finite wave vectogo. In many cases, the nematic-
smectic phase transition in the system of uniform semiSmectic transition can be successfully described within the

flexible chains with hard-core repulsion. This model hasWeak crystallization theory10]. In this approach one as-

been shown to capture all the experimentally observed fegzUMesS t_hat near thg transition, the local deV|at|o_n_s oiine
tures of the transition. In this paper we elaborate on Oup_ensny fleld.are dominated by one or by several critical den-
approach by relating the tube-model calculation to a general'y Waves, L.e.,
density-functional formalism. It is shown that the strong n
first-order character of the transition and the equivalence of _ .
the smectic period to the chain length follow from a general 5p(r)_(121 Pal1)EXNIGor) FC.C. @
form of the density functional of the system.

In Sec. Il we review the density-functional approach toHereq, are the critical wave vectors. The spatial dependence
the nematic-smectic transition. In Sec. Il we derive the genof the n-component order parametgr, is supposed to be
eral form of the free energy of semiflexible chains expressednuch slower than the critical density modulation itself.
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The Landau-type expansion of the free energy in terms of Nematic-smectic transition of semiflexible chains
this order parameter is the essence of the weak crystallization ~gnsider a system of wormlike uniform chains of length

approach: L with hard-core diameteD. The single-chain Hamiltonian
. for a given conformatiom(s) (0<s<L) has the form
€502 N soer Xospar 8 2 2
F f(zap + 0Pt 5500+ 2;1 Vool |dr. (3) H(O):ij?(g_ts) ] ©
0 Js

The trans_lational symmetry Of the free energy qlemands th.E}-t]ere s is the coordinate along the chain contour aid
any term in the above expansion be a combination of dens'%(ar/as) is a unit tangent vector. The paramefeis the

waves with zero total wave vector. Note that a large third- : S . .
order term in this expansion would result in a strogng first_perS|stence length of the chain in the isotropic phase. In the

L . : tnematic phase, however, there are two different scales that
order transition and thus would violate the requirement o lay the role of persistence lengh1]. One of them is the
smallness of the order parameter. Therefore, the weak cry% y —

N : ) : pical distance between “hairpins,” the points at which the
ta!hzatlon theory_ Is adequate only for th_e cases in Wh.'Ch t.h%angent vector changes its direction by 180°. This length
third-order term is zero or small. In particular, its applicabil- '

ity to the nematic-smectic phase transition is normally justi—becOmes exponentially large for high enough nematic order

fied by the broken rotational symmetry of the nematic phas _arame_t er and we assume here that It exceeds .the _chaln
Indeed, in the rotationally symmetric case, the critical Wavee.ngth’ l.e., the conformations of th_e chains are straight lines
vectors’ would lie on the sphere of radigs 1and one could with only weak tr.ans_verse fluctuations of the tangent vector
choose three critical density waves with z’ero total wave vecEibOUt the nematic director. Th_e correlations of these trans-

: L - ~verse fluctuations are determined by another length scale
tor. Therefore, rotational symmetry implies that there is

; ! . %nown as the deflection lengtlg, . This scale, which is
nonzero cubic term in expansiofd). In the case of the smaller then the bare persistence lenpthdetermines the

nematic-smectic transition, the degeneracy in the Oriematioﬂwermod namics of the systefthe free energy can be esti-
of the critical wave vector is lifted and one cannot construct y y oy

a third-order combination of the critical density Waves.mated axT per chain segment of length ).

e We now have to express the free energy as a functional of
Hence, the weak-crystallization theory can usually be P e density of the chains’ centers
plied to this transition. y '

As an example, consider the transition to the smectic state
in the system of perfectly aligned hard rods. The density- p(r)= E o(r(L/2)—r). @)
functional theory, developed for this system in REZ], chains
shows that its basic physics can be successfully describelg

even in the second virial approximation: the chains were infinite, the conformational free energy

averaged over scales larger than would be a local func-
tional of the volume fraction. For finite chains there is also a

d
Flrods :j drp(r)in p(r) translational entropy contribution and a correction due to fi-
kT nite density of chain ends:
1 , , , [ (chaing
+§J f drdr’p(r)v(r—r")p(r’), (4) T :j dr{p(r)In p(r)+ F(h(r))
which yields the following simple expression for the inverse +pend N (1))} ®)

structure factor: . : : .
Because of the low density of chain engls, their effect is

) accounted for in the above expression by a term linear in
sin gL ; ;
1+ 8P ) (5) Pend: coupled to some local function of the volume fract|on._
qL Since the chains are strongly stretched along the nematic
director,z axis, and do not form hairpins, one can relate the
Here we are interested only in the wave vectors parallel tdocal density of the endpen{z) and the local volume frac-
the nematic directore. The breakdown of the stability con- tion of chains¢(z) to the density fieldo(z) (we will not
dition corresponds to the transition to the spatially modulatedonsider any fluctuations of these fields in the plane normal
smectic phase. Since the instability is dominated by a singléo 2):
density wave(with g==*1.57€/L), the transition in the

G Ha)=

hard-rod system is of theveak-crystallizationtype. This Pend2)=p(z+LI12)+p(z—L/2), ©)
means that the smectic modulation of hard rods is weak near )

the transition point. As a result, the normal-to-layer fluctua- b(2)= ﬂ L2 p(z+s)ds (10)
tions of the rods are of the order of their lendthconsistent 4 J_1p '

with the fact that the corresponding perind=1.3L differs

considerably fromL. Although within the model of freely Due to these nontrivial relationships between the three fields
rotating rodq5,6] the phase transition turns out to be of the p(r), &(r), andpendr), the above local free-energy func-
first order, it is so weak that the transition can hardly betional becomes nonlocal when expressed in terms of a single
distinguished experimentally from a second-order one. density field,p. Such nonlocal properties of the density func-
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tional are necessary for the description of the nematic-
smectic transition. The semiflexible chains are unique in the
sense that this functional has a well defined general form
dictated by the property of locality on the mesoscopic scales
(belowL and abovet)).

In order to study the stability of the nematic state, con-
sider the second variation of the free energy at the fixed
average volume fractio® ( and the corresponding density

p=®/V,, whereV,=mD2L/4 is the volume of a single
chain:

SF(chains 1 Sp(r) Sp(r
fdr|vo p(r) 3p(r)

kT 2 )
2f(con) f(end)
+ 0p(r)o¢p(r)+2 a b)
ap* |, I g )
FIG. 1. The shadow regioftlashedlin the case of rigid rod&)
and semiflexible chaing). Note thescreeningof the shadow by
X Spend 1) 0ep(r) ¢ . (1)) neighboring chains in the latter case.

Performing the Fourier transform of all the fields under con-The corresponding conformational free energy of the chain
sideration (along thez axis, neglecting their variations in €an be evaluated in the Gaussian approximation, with the
other directionsand expressing these fields in terms of thecOnfinement imposed by a fictitious external field. The
density deviationsp, we obtain the following diagonalized resulting value is(3/16)kT per correlation length¢,

free energy: = (ZA)Z’_3p1’3 [12]. Note that one can obtain this result, up to
_ a numerical coefficient, from simple scaling arguments, since
SF(NNS Vo Spgdp_gq ¢ can be identified with a typical contour length between two
kT — @% 2 reflections of the chain from the tube walls. We conclude

that the conformational free energy per unit volume is deter-
(1—cosql) sinqLH mined by the fieldp(r):

N®)  (qL? L
3 KT 4¢(r)

(12 fleompy= — 747
- (=162.(0) wp2
Here the dimensionless parameterand the length\ are
certain functions of the average volume fraction, but not of W hat the domi ff ible for th
the chain length or wave vector. Note the universality of the e assume that the dominant effect responsible for the
(q,L) dependence of the inverse structure factor for semiSmectic ordering is that the_tern_al parts O.f jche chains can-
fle;<ible chains: not occupy a “shadow” region in the vicinity of a free end

This is a particular realization of theorrelation hole effect

X

1+A(<D)<

(14)

. 1 s2F(chaing [13]. In the extreme case of perfectly aligned rigid rods, the
G H(q)= KT W space behind the edge of one rod can be filled only by the
T complementary end part of another dsee Fig. 1a)]. How-
Vo L (1—cosqlL) singqL ever, in the system of semiflexible chains, the size of the
ey 1+A(P) N(D) > T L shadow region can be reduced by appropriate readjustments
(qL) q of the conformations of the neighboring chains, as shown in

(13) Fig. 1(b). The screening of the shadow region can be de-
) ) , ) ) cribed by ascreening lengthd. The conformational free-
Be_f?re proceeding W|th the discussion _of thl_s general fo_rm Oinergy penalty for the creation of the free space near the
G, we present a simple model which yields the micro-gqqe"of every chain is given by the product of the local
scopic expressions for the parametdrgD) and N\ (P) ap-  (ansverse pressuf@, = ¢af(© a¢— £ and the typical
pearing in Eq(13). volume of the shadow regiogw|D%/4. Herey is a geo-
metrical factor of order of unity. Approximating the shape of
a typical shadow region with a cone, one obtayss1/3. The
The interactions of a chain with its neighbors can be modiypical bending energy associated with the distortion of
eled by confining it in an effective tube. If the system ischain contour needed for the screening of the shadow region
dense enough, it can be viewed as a close-packed array 'm‘kTDZpllg per chain involved. The screening length and
such tubes. This means that the average tube diameter in thige energy of the end defect is determined by the balance
vicinity of some pointr is D/\/¢(r), whereg(r) is the local between the osmotic energy penalty and the bending energy,
volume fraction. Therefore, the allowed amplitude of fluc-i.e., they can be obtained by minimization of the following
tuations of a chain within the tube 8=D(1/J¢(r)—1) . free energy:

Ill. TUBE-MODEL CALCULATION
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5°F

. ’y’lTlS Zp -1 =—
fend(|)=D 2 Im, + —3kT . ) G (a) KT Spqdp_q
S
_ _ . , _YVolgL 2 !
Here Z is the effective number of distorted chaiff®rtu- ) 16 (1D —1)%

nately, the final result is nearly insensitive to the choice of
this parametgr The minimal value of the above free energy
is given by X

2L (1-cosql) ingL
(P (qL)? A D

2
f(end) _ WZD 134K T p) V4= 7/8&—(1/\/%— 1)-54 (19
(16) This _expre_ssion has ex_actly th_e same ger_leral structure as
was derived in the preceding section. The uniform nematic is
stable(or at least metastablavith respect to the transition to
the spatially modulateésmecti¢ state as long as the calcu-
lated inverse structure factor is positive. The end effect con-
|s=2(2D)%PpY3 (1N ¢(z) — 1)1%=21* (1 p(z) — 1)%12 tribution is the only term in expressiofi9 that may be
(17)  negative[due to the sign-changing factor si/qL]. For
most wave vectors, however, this term cannot change the
Herel*=(2D)%%'? is the fundamental length scale of the overall sign of the structure factor because of the dominant
problem. Up to ap-dependent factor, it determines both the positive conformational contribution, which contains the
screening length and the correlation lengthdiscussed ear- large factorL/ls. This is related to the fact that the shadow
lier. For practical purposes, the screening length can be takd@gions arescreenedn the many-chain system, and the cor-
roughly equal td*. Note that our estimate of the energy of responding end effect is just a small correction to the con-
the end defect is somewhat different from the one describetprmational free energy. This correction is important only in
in Ref.[14], which is based on elasticity theory. The elasticthe vicinity of the zeros of the expression (1
approach neglects the energy penalty associated with thecosgL)/(qL)?, which determines the dependence of the
nonzero osmotic pressufg, , which in our case turns out to bulk conformational contribution to the inverse structure fac-
be considerably stronger than next-order elastic correction$or.
Nevertheless, the very notion of the effective attraction be- We conclude that the modulation instability in the system
tween chain ends discussed in the present paper is concept@-expected only for nearli-periodic density waves, which
ally close to the one in Ref14]. are the zero modes of the conformational term. One can ex-
Depending on the total chain length, one can distinguis}*pand the inverse structure factor in the vicinity of such wave
between two qualitatively different limiting regimes. If ~ vectors, 2rn/L (n=%+1,+2,...):
<I*, the screening effect is not significant and the chains__,
can be considered as rigid rods. Here, we consider the opp@- (5q)|6q=q72wn/L

The correspondong optimal screening length is

site limit, L>1*, when the total volume fraction of the 5 1
shadow regions is low and one can neglect their overlap in :_0( 14 ——— -
the spatially uniform nematic phase. P 16 @ (1/\/® — 1)
Summarizing the above calculation, one can write the to- L sal)2 sal
tal free energy of the system as L9 q
X314\ 2 asE=iil
kT 3L - . "
|:<°ha'”9=—f dri Vop(2)Inp(2)+ — — Its minima are the candidates for the critical wave vector of
Vo 16+ the modulation instability:
é(2) Y Vopendd 2) 277”( |S((I)))
X +3 : F=——1-3JD , N=x1=+2....
(1Ne@ -1 8 (1)~ 1% =L | Ly

(18 (20)

O*=|1+

The control parameteb at whichG~1(g*)=0 turns out to
chains, the second one represents the bulk conformationamall-5q expansion becomes inadeqyate
free energy of infinitely long chains, and the last term is due

15,)/2|* 6/111—-2 \/rk -2
free energy has the general form obtained in the preceding Ity 1) (2D)
section, Eq.(8). There is a one-to-one correspondence be-
and the three terms in the following expression for the in-that differ only by integer multiplier is the signature tife
verse structure factor in the uniform nematic phase, as &rst-order phase transitiono the smectic state. Indeed, un-

The first term accounts for the translational entropy of thebe independent oh (up to a cutoffn,,,~L/*, where the
to the end anomalies. One can easily verify that our model

16L
tween the three discussed contributions to the free energy The existence of the family of critical wave vectdf)
function of the average volume fractich: like the case of &ingle dominating density wave typical of
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FIG. 3. Typical inverse structure factofs arb. unit$ of the
nematic phase for rigid rodglashed ling and semiflexible chains
(solid line).

FIG. 2. Spinodal volume fraction of uniform nematle* as a
function of reduced chain length/I*. The solid line corresponds
to the theoretical result obtained for semiflexible chaihgl{
>1) and the dashed line is an interpolation of the crossover to the
rigid-rod limit (L/1* <1). The geometrical factoy is taken to be
1/3, as suggested in the text. Experimental poidfamonds are We now compare the results obtained for semiflexible
taken from Ref[5]. chains with those for perfectly aligned rigid rods. Consider

the inverse structure factor of perfectly aligned rigid rods,

most smecticge.g., for rigid rods this degeneracyenables EQ. (9):
one to compose the third-order combinations of the critical inal
modes[ ¢(q*) ¥(a*%) ¥(q), n+m+1=0], which contrib- Gl(q)~(1+8¢ﬂ)_
ute to the ternj 5¢(2)]° in the density-deviation expansion
E;:\ZZJr(Zipzr:gcg)z’isECIfrs:zn'w-E\hteo nrzgﬁ?tr?n??r(;tt-?)rr?elrntrt:r?si:rhe first term here is due to translational entropy and the
: second one is the excluded-volume contribution, which is
tion. i . ) essentially the shadow-region end effect. Naturally, the rigid-
The common period of all the critical modes is rod structure factor does not contain the conformational con-
tribution, which dominates the similar expression for semi-
flexible chains. Hence, the shadow-region effect, which
N =L+3/D* yI5(D*). (22 drives the nematic-to-smectic transition, is no longer a small
correction. As a result, the transition in the system of rods
takes place at a lower volume fraction, whichdi& =0.57
In a general case this critical period can differ from that ofwithin the second virial approximation, E¢6). Taking the
the equilibrium-modulated phase. Nevertheless, the aboveigher virial terms into account changes this value to 0.36. If
result suggests that the period of the smektigearly coin-  the rods are freely rotating, the critical volume fraction de-
cides with the chain length, and that the small correction pends on the length-to-diameter ratio. For long enough
A—L is of the order oflg=1*. This correction determines chains (/D>10) the transition volume fraction reachs a
both the typical gap between well formed smectic layers and¢tuniversal” value ®=0.46(5,6]. In the case of considerable
the typical longitudinal fluctuations of the chains in theseflexibility of the “molecules,” the critical(spinoda) volume
layers. This is consistent with the observations reported ifraction given by expressio(21) is not constant even for a
Ref. [7], for which the calculated length* =100 nm is of  high length-to-diameter ratio, since the relavant parameter
the order of the measured correction to the periodL here isL/I*, rather tharL/D (see Fig. 2
=50 nm. The effective hard-core diameter in the experi- The typical behavior of the inverse structure factors for
ments can be estimated as the interchain separation at whiciyid rods, Eq.(5), and semiflexible chains, Eq19), are
the electrostatic repulsion becomes of the ordek®f This  depicted in Fig. 3. Unlike the case of semiflexible chains
length depends on the ionic strength, so it was possible t6L>1*), in which theg* degeneracy of the bifurcation point
change it independently of the particle density. Sihte results in a strong first-order transition, the deepest minimum
=(2D)?%3p® depends on the hard-core diameletthe mea- of the rigid-rod inverse structure factor determinesirgle
sured points on the phase diagrafooncentration-ionic critical wave vector of the modulation instability. This ex-
strength can be transformed to the coordinates of our theonplains why the nematic-smectic transition for rigid rods is
(d-L/1*). The calculated spinodal volume fraction, much softer than for semiflexible chains.
Eq(21), is in agreement with the experimental value, which  Another important implication of the theory is the effect
is about 0.75 for/1* in the range of 4—-10. Note that the of polydispersity. Since the inverse structure factor describes
chain-length dependence of the critical volume fraction isthe effective two-body interactions, expressiohg) and (5)
rather weak, as shown in Fig. 2. can be extended to the polydisperse case by replacing a

IV. DISCUSSION AND CONCLUSIONS
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single parametet with the mean length of two interacting ence of shadow regions yields just a small correction to the
particles (,+L,)/2, and averaging over the distribution of conformational free energy that stabilizes the spatially uni-
lengths. The polydispersity acts against the modulation instaform nematic state. As a result, the spinodal volume fraction
bility, because it reduces the depth of minima of the inversdor flexible chains is much higher than for rigid rods. This
structure factor. Hence, the critical volume fraction is ex-trend is consistent with the experiments as well as with the
pected to increase with polydispersity for both chains andecent theory of weakly flexible rod46]. The modulation
rods. However, while the smectic phase can form in systemmstability of the nematic state can appear only for nearly
of rods with quite broad distribution of lengths5], the typi-  L-periodic density waves, which are the soft modes of the
cal deviation of the chain length, which completely sup-bulk conformational free energy. Therefore, unlike the rigid-
presses the transition in systems of chains, is of the order obd case, the period of the smectic phase near the transition
I*. Thus, in order to observe the smectic phase in the systeoint almost coincides with the chain lendth Another im-
of chains, the distribution of lengths has to be very narrow.portant difference is that in the case of semiflexible chains,

It should be noted that although we have shown that th¢he point of modulation instability is highly degenerate in the
above behavior follows from a very general form of the den-critical wave vector resulting in a strong first-order phase
sity functional for semiflexible chains, our formalism cannottransition. The theory also implies that the flexibility of the
be directly applied to the case of long-rangexagonadlin-  chains results in higher sensitivity of the transition to poly-
layer structure. In that case, a chain end becomes a real tdispersity. The agreement of the theory with existing experi-
pological defect, and there is no reason to expect that thmental data confirms that it captures the basic physics of the
corresponding energy penalty is finite, i.e., that the correphenomenon.
sponding contribution to the total free energy, E8), is
linear in the chain-end density. . _ ' ACKNOWLEDGMENTS
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